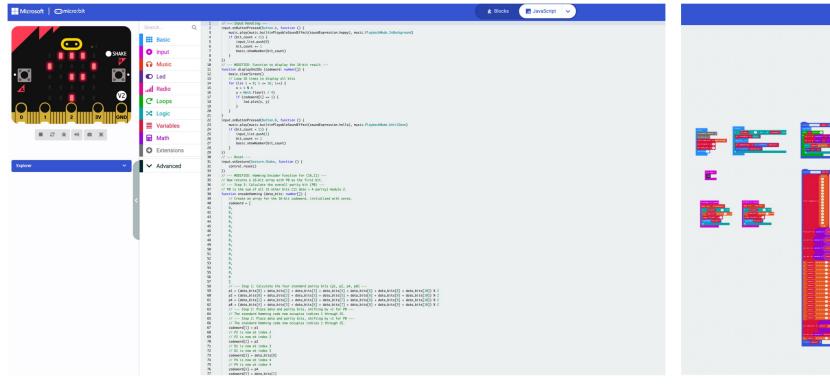
ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li Fall 2025

Hamming codes can be done in the CS way





Hamming codes can be done in the EE way

Before that, we need to acquire some basic skill sets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface

Pre-step: Data forms

Say bye-bye to base 10:

Base 10 (0,1,2,3,4,5,6,7,8,9):

$$(4321)_{10} =$$

$$4 \times 3 \times 2 \times 1 \times$$

$$+10^{3} + 10^{2} + 10^{1} + 10^{0}$$

Base 2 (0,1): Base 16 (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F):
$$(1011)_2 = (FF12)_{16} = \\ 1 \times 0 \times 1 \times 1 \times \\ +2^3 + 2^2 + 2^1 + 2^0 + 2^0 + 16^3 + 16^2 + 16^1 + 16^0$$

Looking up how we do base conversions manually and in python.

The calculation of base 2 are pretty boring compared to base 10

- Your base 10 arithmetic skills can be translated to base 2 ones.
- We will revisit more binary arithmetic operation later, after the logic COE COLLEGE. gates!

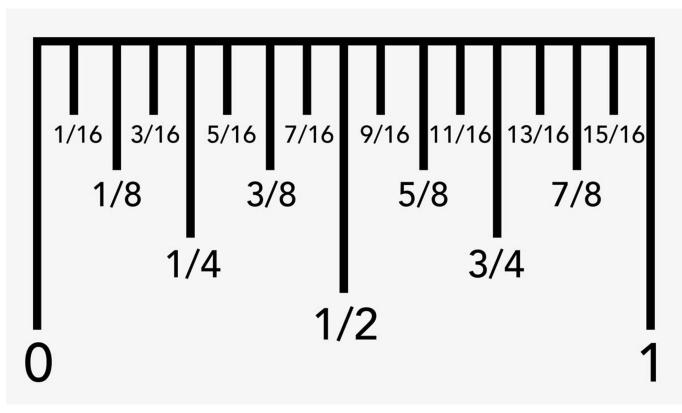
Discuss: the origin of base 16?

Discuss: the origin of base 16?

My theory:

An easy and fair way to compute with a weightless balance scale.

https://commons.wikimedia.org/w/index.php?curid=79229218



https://www.inchcalculator.com/how-to-read-a-ruler/

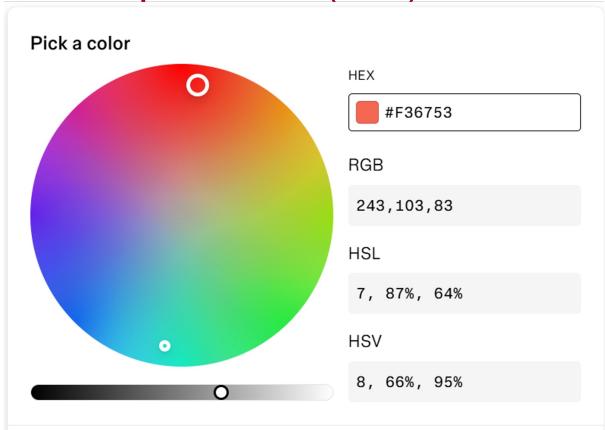
Discuss: why CS loves Hex(decimal) coding

0b:00111001001011111010

0x:392FA

Example: why CS loves Hex(decimal) coding

Example: RGB (8bit) color code or Hex code



#F36753

R:

Bin(243)=<u>1111</u>0011

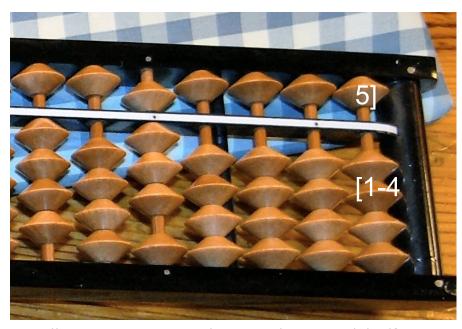
G:

Bin(103)=<u>0110</u>0111

B: Bin(83)=01010011

https://www.figma.com/color-wheel/

Before logic gates: why abacus, again?



https://upload.wikimedia.org/wikipedia/commons/9/98/Soroban _%28Abacus%29.JPG

Or presented in this way [0, 1]

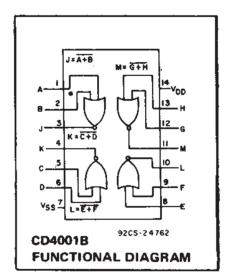
These bits are for counting "not 5".

These bits are for counting "5".

- This is forcing more states in a bit.
- Or due to the polarity of [0,1], it is a state vector.
- State vector is a useful tool for cutting-edge computing.

Step 1-2: store data and move data around

The basic functional unit for digital electronics: gate



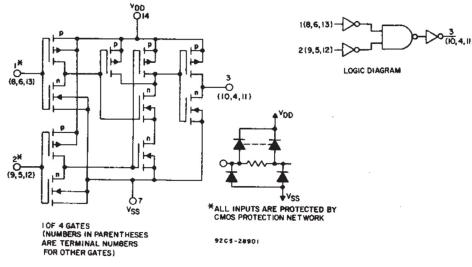
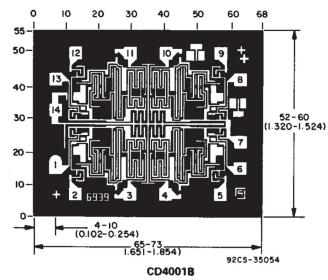
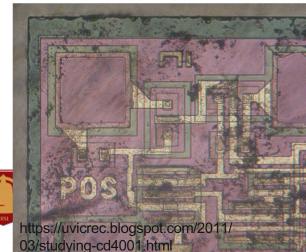


Fig.5 - Schematic and logic diagrams for CD4001B.



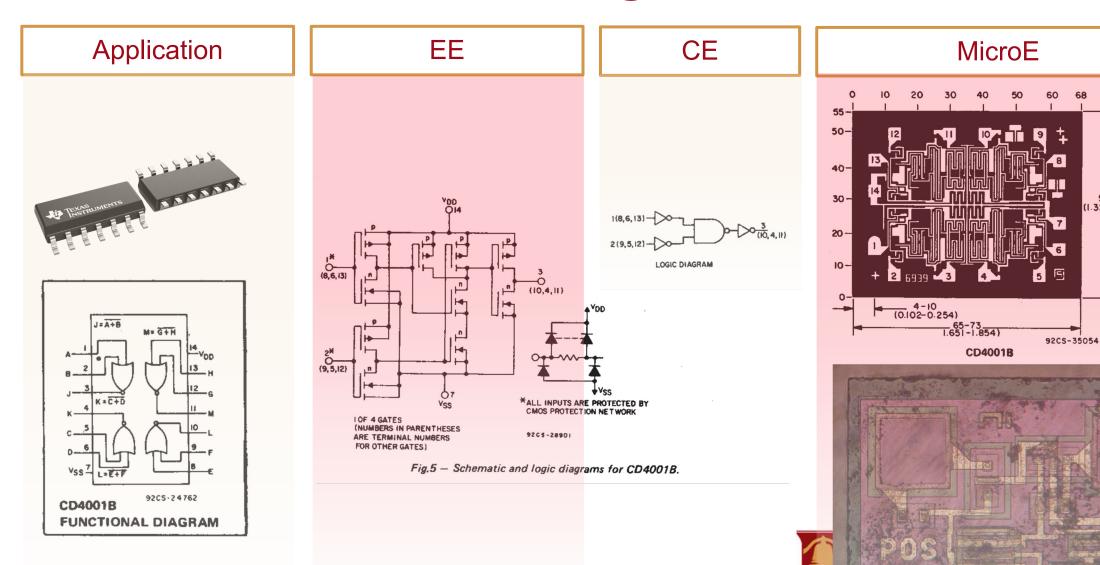


BTW: the multi-staged abstraction:

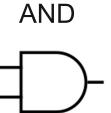
52-60 (1.320-1.524)

https://uvicrec.blogspot.com/2011/

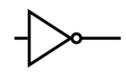
03/studying-cd4001.html



Boolean operations 1st gen: basic True or False algebra

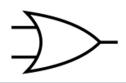


AND gate truth table		
Input		Output
Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1



Inverter truth table		
Input Output		
Α	NOTA	
0	1	
1	0	

OR



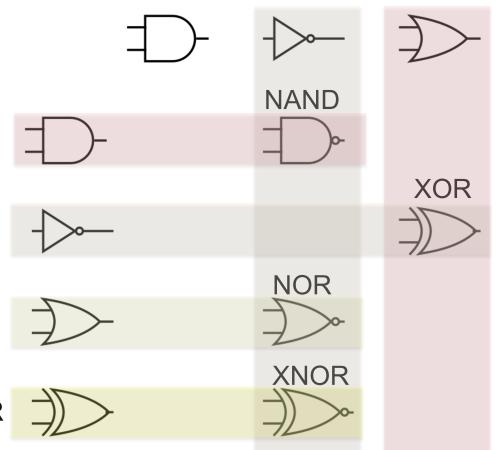
OR gate truth table		
put	Output	
В	A OR B	
0	0	
1	1	
0	1	
1	1	
	B 0 1	

Boolean arithmetic symbols are messy

Viable symbols

AND	• * × & ∧
NOT	! ' ¬
OR	+ ∨

 Boolean operations 2nd gen: "logical logic operation"



"reverse AND" NAND gate truth table		
Input Output		
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

"reverse OR" NOR gate truth table		
Input Output		
Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

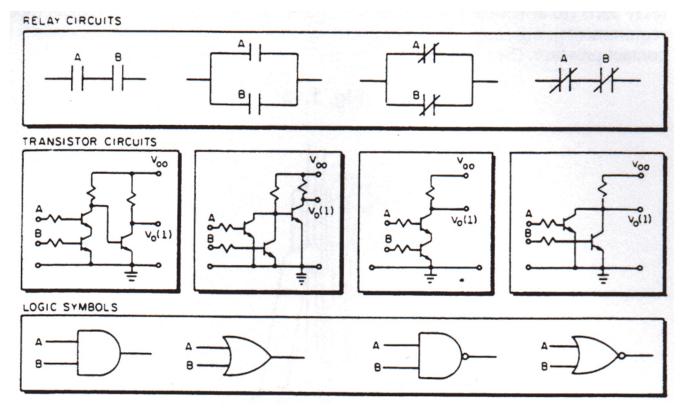
XOR gate truth table		
Inp	out	Output
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

"exclusive OR"

"reverse XOR" XNOR gate truth table		
Input Output		
Α	В	A XNOR B
0	0	1
0	1	0
1	0	0
1	1	1

Truth table from: https://en.wikipedia.org/wiki/~_gate

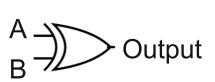
Logic operation in the early days



Transistor–transistor logic (TTL) built with BJT

Fig. 1.12 Symbols used in cam-operated timer control.

A great example of logic gate functions:



XOR gate truth table

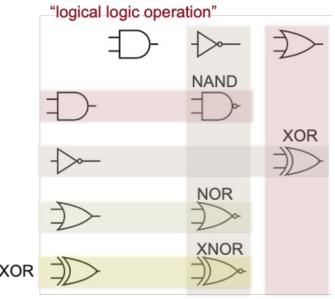
Input		Output
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Parity check?

"Universal Gate"

 We can use AND, OR, and NOT to build any gates:

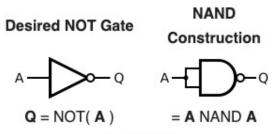
Boolean operations 2nd gen:



We can build any gates with NAND gate:

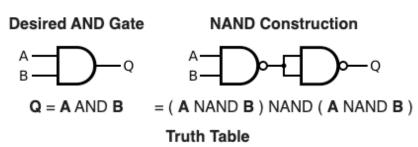
"Universal Gate"

We can build any gates with NAND gate:



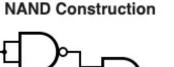
Truth Table

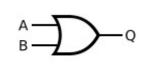
Input A	Output Q	
0	1	
1	0	

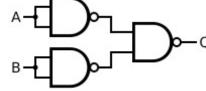


Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Desired OR Gate







 $\mathbf{Q} = \mathbf{A} \text{ OR } \mathbf{B}$

= (A NAND A) NAND (B NAND B)

Truth Table

Inp	ut A	Input B	Output Q
	0	0	0
	0	1	1
	1	0	1
	1	1	1

Idontition

One can dig deeper into the Boolean operations:

Boolean expressions of the 16 functions between two variables.

Function Name	Function description	Boolean Expression
Null	FALSE (0)	0
AND	AND	A·B
Inhibition	A NOT B	A/B
Transfer	А	Α
Inhibition	B NOT A	B/A
Transfer	В	В
Exclusive-OR	XOR	A⊕B
OR	OR	A+B
NOR	NOR	A↓B
XNOR	XNOR	AOB
Complement	NOT B	B'
Implication	A OR NOT B	A+B'
Complement	NOT A	A'
Implication	NOT A OR B	A'+B
NAND	NAND	A↑B
Identity	TRUE (1)	1

Fundamental Theorems & Postulates of Boolean Algebra

A = V + 0 - V

identiues:	(μ)	X + U = X	$(LD) X \cdot I = X$
Null Elements:	(2)	X + 1 = 1	(2D) $X \cdot 0 = 0$
Indempotency:	(3)	X + X = X	$(3D) X \cdot X = X$
Involution (Double	Nega	ntion): (4)	(X')' = X
Complements:	(5)	X + X' = 1	(5D) $X \cdot X' = 0$
Commutativity:	(6)	X + Y = Y + X	(6D) $X \cdot Y = Y \cdot X$
Associativity:	(7)	(X+Y)+Z=X+(Y+Z)	(7D) $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity:	(8)	$X \bullet Y + X \bullet Z = X \bullet (Y + Z)$	(8D) $(X+Y) \cdot (X+Z) = X+Y \cdot Z$
Combining:	(9)	$X \bullet Y + X \bullet Y^{\bullet} = X$	(9D) $(X+Y) \cdot (X+Y') = X$
Covering:	(10)	$X + X \cdot Y = X$	(10D) $X \cdot (X+Y) = X$
DeMorgan's Laws:	(12)	$(X \cdot Y \cdot Z)' = X' + Y' + Z'$	(12D) $(X+Y+Z)' = X' \cdot Y' \cdot Z'$
Consensus:	(17)	$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X \cdot Z$	(17D) $(X+Y) \cdot (X'+Z) \cdot (Y+Z) =$
			(X+Y)•(X'+Z)
Shannon Expansion	n:	(18) $F(X,Y,Z) = X \cdot F(1,Y)$	$(X,Z) + X' \cdot F(0,Y,Z)$
-		(18D) $F(X,Y,Z) = (X+F(0,$	(Y,Z)• $(X'+F(1,Y,Z))$

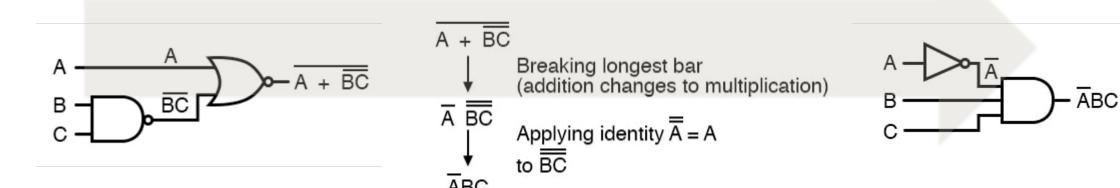
CS211, Rutgers 2013 notes

ADV VAI - V

But we will only touch base on two:

De Morgan's laws (1/2)

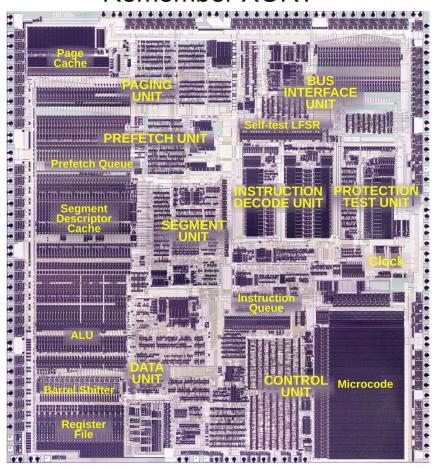
$$\overline{(A\cdot B)}\equiv (\overline{A}+\overline{B}) \ \overline{(A+B)}\equiv (\overline{A}\cdot \overline{B})$$



Example from: https://www.allaboutcircuits.com/textbook/digital/chpt-7/demorgans-theorems/

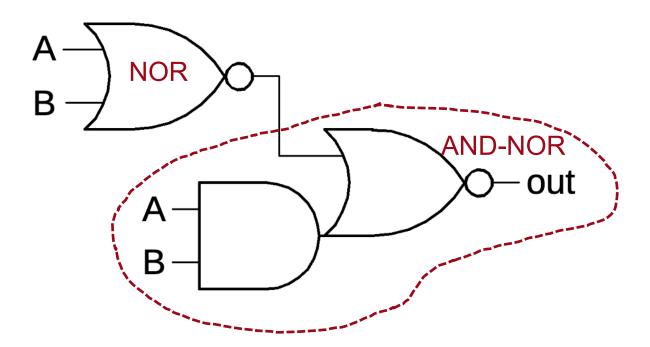
De Morgan's laws is a way to **mathematically** simplified a circuit, but not always realistic for IC.

Remember XOR?

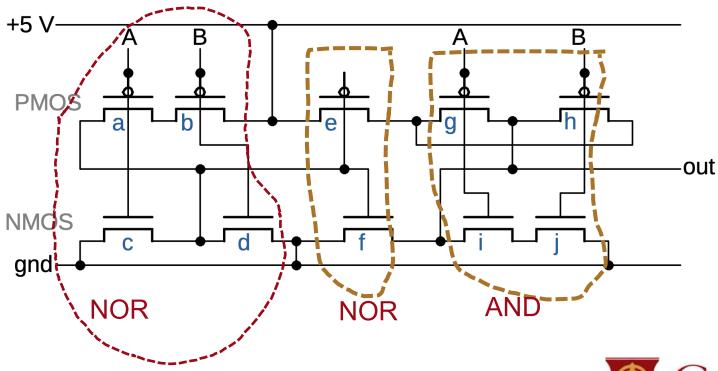


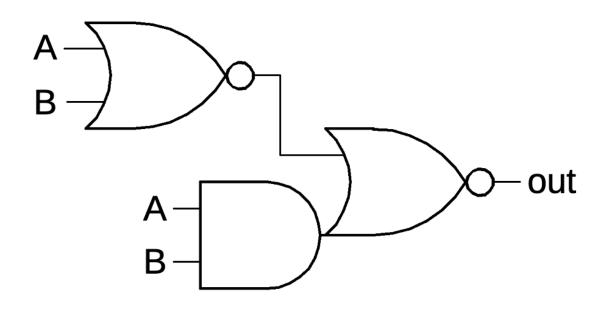
This Intel's 386 processor (1985) sure has a lot of it.

This is the logic gate it used to generate XOR:

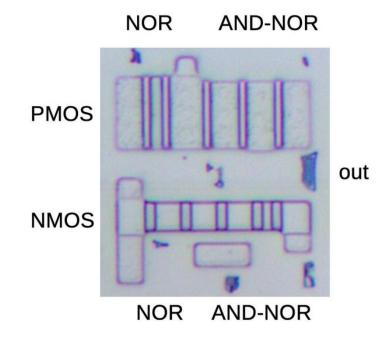


This is the transistor layout it used to generate XOR:



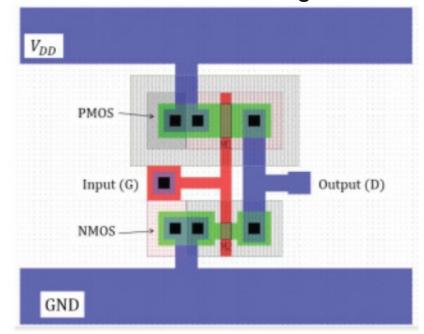


This is the actual XOR gate on IC



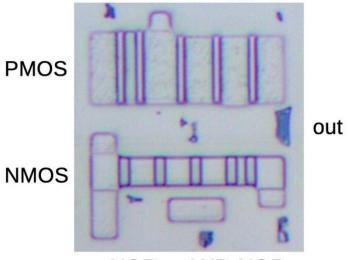
P well and N well design wise, not much differ from this invertor design:

CMOS invertor including electrodes



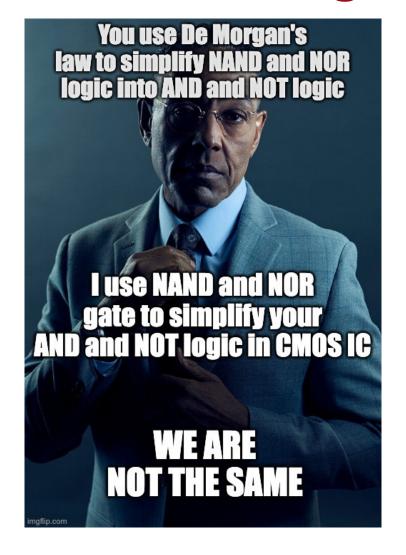
DOI: 10.1145/2755563

This is the actual XOR gate on IC NOR AND-NOR



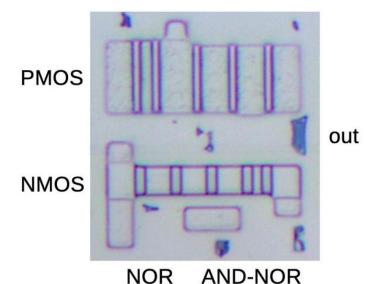
NOR AND-NOR

https://www.righto.com/2023/12/386-xor-circuits.html



This is the actual XOR gate on IC

NOR AND-NOR



https://www.righto.com/2023/12/386-xor-circuits.html

But we will only pouch base on two:

Karnaugh map (K-map) (2/2)

NAI	NAND gate truth table				
Inp	out	Output			
Α	В	A NAND B			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

K-map of NAND gate

В	4 0	1
0	1	1
1	1	0

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

Karnaugh map (K-map) (2/2), continued

K-map grouping rules

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

(A AND B) OR (NOTC AND D) (A×B)+(!C ×D)

	AB CD	00	01	11	10
!C×!D	00	0	0	1	0
!C×D	01 <	1	1	1	1
C×D	11	0	0	1	0
C×!D	10	0	0	1	0

Karnaugh map (K-map) (2/2), in class practice

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

AB CD	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	0	0
10	0	0	1	1

Karnaugh map (K-map) (2/2), in class practice

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

AB CD	00	01	11	10	
00	0	0	1	1	
01 (1	1) 0	0	
11	0	0	0	0	
10	0	0 <	1	1	

Karnaugh map (K-map) (2/2), 1 more in class practice

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

BC A	00	01	11	10
0	0	1	1	1
1	1	1	1	0

Karnaugh map (K-map) (2/2), 1 more in class practice

- 1.No zeros allowed.
- 2.No diagonals.
- 3.Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

$$(A \times !B) + (!A \times B) + C$$

A BC	00	01	11	10
0	0	1 (1	1
1 (1	1	1	0

Other than K-map, the more mechanical way to turn truth map to Boolean equations:

				Step 1	Step 2	Step 3
	Α	В	С		$C = C_0 + C_1 + C_2$	$C = !A \times !B + !A \times B + A \times !B$
<	0	0	1	C ₀ =!A ×!B		$= !A(!B + B)+A \times !B \text{Complements:} \text{(5)} X+X=1$ $= !A + A \times !B$
<	0	1	1	C ₁ =!A ×B		$= !A \times (1 + !B) +A \times !B \text{ Null Elements:} \qquad (2) \times +A + !A + !A + !B + A + !B$
<	1	0	1	$C_2=A \times !B$		= !A + (!A +A) × !B =!A + !B
	1	1	0			

- This expression is also called Sum of Products (SOP).
- There are also Product of Sums, for sure.

