
ENR-325/325L Principles of Digital
Electronics and Laboratory

Xiang Li
Fall 2025

Hamming codes can be done in the CS way

Hamming codes can be done in the EE way
• Before that, we need to acquire some basic skill sets.
Pre-step: Data forms
Step 1: Data manipulation
Step 2: Information storage
Step 3: Interface

Pre-step: Data forms
• Say bye-bye to base 10:

Looking up how we do base conversions manually and in python.

The calculation of base 2 are pretty boring
compared to base 10

324
+123

Base 10
110

+101

Base 2

324
-123

110
-101

324
×123

Base 10
110

× 101

Base 2

324
÷ 6

110
÷10

• Your base 10 arithmetic skills can be translated to base 2 ones.
• We will revisit more binary arithmetic operation later, after the logic

gates!

Discuss: the origin of base 16?

Discuss: the origin of base 16?

https://www.inchcalculator.com/how-to-read-a-ruler/

My theory:
An easy and fair way to compute with
a weightless balance scale.

https://commons.wikimedia.org/w/index.php?curid=79229218

Discuss: why CS loves Hex(decimal) coding

0b:00111001001011111010
0x:392FA

Example: why CS loves Hex(decimal) coding
• Example: RGB (8bit) color code or Hex code

https://www.figma.com/color-wheel/

#F36753

R:
Bin(243)=11110011

G:
Bin(103)=01100111

B: Bin(83)=01010011

Before logic gates: why abacus, again?

https://upload.wikimedia.org/wikipedia/commons/9/98/Soroban
_%28Abacus%29.JPG

[1-4

Or presented in this way [0,1]

5]

• This is forcing more states in a bit.
• Or due to the polarity of [0,1], it is a state vector.
• State vector is a useful tool for cutting-edge computing.

These bits are for
counting “not 5”.

These bits are for
counting “5”.

Step 1-2: store data and move data around
• The basic functional unit for digital electronics: gate

https://uvicrec.blogspot.com/2011/
03/studying-cd4001.htmlhttps://www.ti.com/product/CD4001B/part-details/CD4001BM

BTW: the multi-staged abstraction:

https://uvicrec.blogspot.com/2011/
03/studying-cd4001.htmlhttps://www.ti.com/product/CD4001B/part-details/CD4001BM

Application EE CE MicroE

Step 1: data manipulation
• Boolean operations 1st gen: basic True or False algebra

AND ORNOT

Truth table from: https://en.wikipedia.org/wiki/~_gate

Boolean arithmetic
symbols are messy

Viable symbols
AND ● * × & ∧
NOT ! - _ ‘ ¬
OR + | ∨

Step 1: data manipulation
• Boolean operations 2nd gen:

“logical logic operation”

NAND

XOR

NOR

XOR
XNOR

Truth table from: https://en.wikipedia.org/wiki/~_gate

“reverse AND” “reverse OR”

“reverse XOR”

“exclusive OR”

Logic operation in the early days

Engineer's Relay Handbook, 5th edition, Relay and Switch Industry Association (RSIA), 1966

Transistor–transistor logic (TTL)
built with BJT

Step 1: data manipulation
• A great example of logic gate functions:

Truth table from: https://en.wikipedia.org/wiki/~_gate

Parity check?
A
B

Output

“Universal Gate”
• We can use AND, OR, and

NOT to build any gates:

• We can build any gates with NAND gate:

https://en.wikipedia.org/wiki/NAND_logic

“Universal Gate”
• We can build any gates with NAND gate:

https://en.wikipedia.org/wiki/NAND_logic

Step 1: data manipulation
• One can dig deeper into the Boolean operations:

CS211, Rutgers 2013 notes

Boolean expressions of the 16 functions
between two variables.

Function Name Function description Boolean Expression
Null FALSE (0) 0
AND AND A⋅B

Inhibition A NOT B A/B
Transfer A A
Inhibition B NOT A B/A
Transfer B B

Exclusive-OR XOR A⊕B
OR OR A+B

NOR NOR A↓B
XNOR XNOR AʘB

Complement NOT B B'
Implication A OR NOT B A+B'

Complement NOT A A'
Implication NOT A OR B A'+B

NAND NAND A↑B
Identity TRUE (1) 1

https://github.com/mattklein93/Rutgers-University-Notes/tree/master/CS211

Step 1: data manipulation
But we will only touch base on two:
• De Morgan's laws (1/2)

not (A OR B) = (not A) AND (not B)
not (A AND B) = (not A) OR (not B)

Example from: https://www.allaboutcircuits.com/textbook/digital/chpt-7/demorgans-theorems/

De Morgan's laws is a way to mathematically
simplified a circuit, but not always realistic for IC.

This is the true logic simplification for IC
Remember XOR?

This Intel's 386 processor (1985) sure has a lot of it.

https://www.righto.com/2023/12/386-xor-circuits.html

This is the true logic simplification for IC

https://www.righto.com/2023/12/386-xor-circuits.html

This is the logic gate it used to generate XOR:

NOR

AND-NOR

This is the true logic simplification for IC

https://www.righto.com/2023/12/386-xor-circuits.html

This is the transistor layout it used to generate XOR:

NOR ANDNOR

This is the true logic simplification for IC

https://www.righto.com/2023/12/386-xor-circuits.html

This is the actual XOR gate on IC

This is the true logic simplification for IC

https://www.righto.com/2023/12/386-xor-circuits.html

This is the actual XOR gate on IC

DOI: 10.1145/2755563

P well and N well design wise, not much
differ from this invertor design:

CMOS invertor including electrodes

This is the true logic simplification for IC

https://www.righto.com/2023/12/386-xor-circuits.html

This is the actual XOR gate on IC

Step 1: data manipulation
But we will only pouch base on two:
• Karnaugh map (K-map) (2/2)

0 1
0 1 1
1 1 0

AB

K-map of NAND gate

K-map grouping rules
1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

Grouping rules: https://physics.umd.edu/~drew/spr07/Karnaugh%20Maps%20-
%20Rules%20of%20Simplification.htm

Step 1: data manipulation
• Karnaugh map (K-map) (2/2), continued

00 01 11 10

00 0 0 1 0

01 1 1 1 1

11 0 0 1 0

10 0 0 1 0

AB
CD

(A AND B) OR (NOTC AND D)
(A×B)+(!C ×D)K-map grouping rules

1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

!C×!D

!C×D

C×D

C×!D

Step 1: data manipulation
• Karnaugh map (K-map) (2/2), in class practice

K-map grouping rules
1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

00 01 11 10

00 0 0 1 1

01 1 1 0 0

11 0 0 0 0

10 0 0 1 1

AB
CD

Step 1: data manipulation
• Karnaugh map (K-map) (2/2), in class practice

K-map grouping rules
1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

00 01 11 10

00 0 0 1 1

01 1 1 0 0

11 0 0 0 0

10 0 0 1 1

AB
CD

(!A × !C × D)+(A × !D)

Step 1: data manipulation
• Karnaugh map (K-map) (2/2), 1 more in class practice

K-map grouping rules
1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

00 01 11 10

0 0 1 1 1

1 1 1 1 0

BC
A

Step 1: data manipulation
• Karnaugh map (K-map) (2/2), 1 more in class practice

K-map grouping rules
1.No zeros allowed.
2.No diagonals.
3.Only power of 2 number of cells in
each group.
4.Groups should be as large as
possible.
5.Every one must be in at least one
group.
6.Overlapping allowed.
7.Wrap around allowed.
8.Fewest number of groups possible.

00 01 11 10

0 0 1 1 1

1 1 1 1 0

BC
A

(A × !B)+ (!A × B) + C

Step 1: data manipulation
• Other than K-map, the more mechanical way to turn truth map to Boolean equations:

C0=!A ×!B

A B C

0 0 1

0 1 1

1 0 1

1 1 0

C1=!A ×B

C2=A ×!B

C = C0 + C1 + C2

Step 1 Step 2 Step 3
C = !A ×!B + !A ×B + A ×!B
= !A(!B + B)+A ×!B
= !A +A ×!B
= !A × (1+ ! B) +A × !B
= !A + !A ! B +A !B
= !A + (!A +A) × !B
=!A + !B

=• This expression is also called Sum of Products (SOP).
• There are also Product of Sums, for sure.

