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Why go digital? – the EE version
Now let’s get back to Shannon’s information theory



The system at Shannon’s time
Guardian Electric 
Series 200 Relay

Simon 1 relay logic 
machine, 1950

Available on ebay by seller 
sharkbate111

https://www.computerhistory.org/re
volution/digital-logic/12/271/1341

Aztec pinball machine, 1970s

https://www.youtube.com/watch?
v=ue-1JoJQaEg&t=2423s



The information theory (aka the 
communication theory)

The most basic definition of information, should still meet 
the need of the most basic form of communication: 
the switch on/off of relays!

Shannon’s communication is NOT communication with any specific 
languages, it’s more like sending 1s and 0s through long distance.



The information theory (aka the 
communication theory)

Shannon’s information unit: 1 bit = on/off of one relay (where the possibility of on/off is p=½)

1 bit 2 bits 

P = 1/2

P = 1/4 

4 bits 

And such information increase in the power of 2:

P = 1/8 

To Shannon, the opposite of communication is: 
RNG (random number generation).



The information theory (aka the 
communication theory)

“Bit” (when use base 2) becomes the information’s unit of measure.

Number of switches

The “odds”, the probability

The “information”



Shannon’s entropy (H)

The goal: - to quantify how accurately can the symbols of communication 
be transmitted.

https://en.wikipedia.org/wiki/Entropy

The form is very like something from thermo dynamics



Shannon’s entropy (H)
• To quantify the degree of uncertainty, “surprise”, randomness or.. entropy of the communication 

system.

DOI: 10.36785/jaes.131550



H in application: Shannon’s channel capacity
C = 1 – H(p)For Binary Symmetric Channel (BSC) 

BSC

• 1 bit input (0 or 1).
• The probability of error is p.
• The probability of error is the same 

for both 0 and 1.



H in application: Shannon’s channel capacity
C = 1 – H(p)For Binary Symmetric Channel (BSC) 

BSC

When p = 1/1000
H(p) = 0.011 bits, C=?

When p =  1/2
H(p) = 1 bit, C=?



H in application: genetics

https://en.wikipedia.org/wiki/Genetics

So our genes runs on a 
2 bit system?

How many bits for the 
function (protein)?

https://doi.org/10.1016/j.jtbi.2017.01.046

https://doi.org/10.1016/j.jtbi.2017.01.046


H in application: genetics



The probability

H in application: cross-entropy

𝐻(𝑃) =&𝑝 log!
1
𝑝

The true H of a system:

What if we don’t have data of the true system?

The “information”
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The probability

H in application: cross-entropy

𝐻(𝑃) =&𝑝 log!
1
𝑝

The true H of a system:

What if we don’t have data of the true system?

The “information”

𝐻(𝑄) =&𝑞 log!
1
𝑞

We can make educated guess.

Hence, the cross-entropy:

𝐻(𝑃, 𝑄) =&𝑝 log!
1
𝑞

𝐻(𝑄, 𝑃) =&𝑞 log!
1
𝑝

And a handy tool called K-L divergence*:

𝐷"#(𝑃, 𝑄) = 𝐻 𝑃, 𝑄 − 𝐻(𝑃) =&𝑝 log!
𝑝
𝑞

*: Kullback–Leibler divergence



H and C, more explanations

• The following slides are backups to help better 
understand the information theory, and Shannon’s 
original deduction.

•



Shannon’s entropy (H)
What properties (H) have? 

• H is dealing with probabilities and be continuous. H(p1, p2, … pn).
• When no freedom of choice (certain outcome), H = 0.
• When pi ↑, H ↓.
• H is largest when all outcomes are equally possible.
• The information from independent sets is linearly additive H(p1)+H(p2)=H(p1*p2).



Shannon’s entropy (H)

When K = 1,



Shannon’s entropy (H)



Hy(X) starts with conditional entropy, basically

H(X) H(Y)

H(X,Y) = H(X) + H(Y)



Hy(X) starts with conditional entropy, basically

H(X,Y) = H(X) + Hx(Y) = Hy(X) + H(Y)
H(X,Y) = Hx(Y) + Hy(X) + I(X,Y)

Hx(Y)Hy(X)
I(X,Y)

?
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H in application: Shannon’s channel capacity

But how? Shannon didn’t give the answer.

Additional read: https://www.quantamagazine.org/how-claude-
shannons-information-theory-invented-the-future-20201222/

When p =  0.1

MacKay, David JC. Information theory, inference and learning algorithms. 
Cambridge university press, 2003.

C = Max (H(X) - Hy(X)) = Max I(X,Y)

“the worst pipe misalignment”



H in application: genetics

Yamagishi, Michel E. Beleza, and Alex Itiro Shimabukuro. "Nucleotide frequencies in 
human genome and Fibonacci numbers." Bulletin of mathematical biology 70.3 (2008): 643-
653.



Why NOT go digital? – the EE version

https://en.wikipedia.org/wiki/Infinite_switch

Or Simmerstat, a >100 year old tech but still 
going strong

Robertshaw Simmerstat ( MPA-V413-IAM )
https://gii.easy.co/products/robertshaw-simmerstat-mpa-v413-iam-


