Setting up Embedded Rust for Microbit (v1.2)
Sep 2025 ENR325

The most painful process of doing embedded system, is not
the coding (or getting paid less than software dev), but
setting up your coding environment.

Embedded is NOT hard. A vending machine is an
embedded system. Who's afraid of a vending machine?

This manual is built based on <micro::bit v2 Embedded
Discovery Book>. Thanks to Embedded Working Group at
the Rust community.

1) Tooling:
1.1) Install Rust:
https://www.rust-lang.org/tools/install
*For Linux or Mac, it’s just a cmd line.

For installation on windows, go to:
https://www.rust-lang.org/tools/install
Download the exe file. Most likely your PC is 64-BIT.

Using rustup (Recommended)

It looks like you're running Windows. To start using Rust, download the installer, then run the program and follow the onscreen
instructions. You may need to install the Visual Studio C++ Build tools when prompted to do so. If you are not on Windows see "Other
Installation Methods".

DOWNLOAD RUSTUP-INIT.EXE (32-BIT) DOWNLOAD RUSTUP-INIT.EXE (64-BIT)

https://docs.rust-embedded.org/discovery-mb2/index.html#microbit-v2-embedded-discovery-book
https://docs.rust-embedded.org/discovery-mb2/index.html#microbit-v2-embedded-discovery-book
https://github.com/rust-embedded/wg
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

Or you can go to:
https://forge.rust-lang.org/infra/other-installation-
methods.html

Look for the mirror (m3|) file:

Past releases can be found in

platform stable (1.89.0) beta nightly

aarch64-apple-darwin

aarch64-pc-windows-gnullvm

aarch64-pc-windows-msvc

When you double click the exe file, you will open a cmd
window. Choose standard installation (press enter or 1).

Proceed with standard installation| (default - just press enter)
Customize installation
Cancel installation

profile set ‘default’

default hos iple is x86 64-pc-windows-msvc

Updating existing toolchain, protilggchoice will be ignored

syncing channel updates for ‘stable-3R6_64-pc-windows-msvc

latest update on 2825-88-87, rust vers\gn 1.89.0 (29483883e 2025-068-04)

downloading component ‘cargo’

downloading component ‘clippy’ ThIS |S our PC’S CPU

downloading component ‘rust-docs’)/

downloading component ‘rus td’ “ ”

downloading component °rustc’ type”, member that!
5.9 MiB / 75.9 MiB (100 11.4 MiB/s i 6s

downloading component ‘rustfmt’

removing previous version of component ‘cargo’

removing previous version of component '

removing previous version of component

removing previous version of component

removing previous version of component ‘rustc’

removing previous version of component ‘rustfmt’

installing component ‘cargo’

installing component ‘clippy’

installing component ‘rust-docs’

MiB / 2.2 MiB (100 %) 1.5 MiB/s in

https://forge.rust-lang.org/infra/other-installation-methods.html
https://forge.rust-lang.org/infra/other-installation-methods.html

When installing Rust, if prompt, allow it to install the Visual
Studio C++ Build tools too. MS Windows needs these to run
Rust.

1.2) Install code editor (IDE)

VS code works, so let’s just use that.
Notes: there are many IDE available in the wild. VS code is
not the fastest, but it's one of the popular ones to get rolling.

To install VS code on windows, go to:
https://code.visualstudio.com/

or
https://code.visualstudio.com/download

Download the installer for your OS. You will be required to
create an account, or link your account to Github. If you
haven’t done so, now it’s the time.

Download Visual Studio Code
ee and built on open source. Integrated Git, debugging and extensions

’

L Mac

https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://code.visualstudio.com/
https://code.visualstudio.com/download

1.3) Get familiar with Visual Studio Code (VS Code)

When you first open VS code, it might look like this:

You will mostly work within two windows/panels, for now.

i) The work bench (where we do the coding stuff):

Lines of codes will be
cooked here.

i) The terminal (defaults on the bottom, where we do
some hacker stuff):

Try click this

N

E || TERMINAL | PORTS EMOR XRTOS ~ SERIAL MONITOR B powershell +v [0 @ - | I3

PS C:\Users\YandXandTed> D

Let’s type “rustup” (not including the quotation mark) to
check the version.

PROBLEM! UT DEBUG CONSOLE TERMINAL

.....

completions Generate tab-completion scripts for your shell
help Print this message or the help of the given sul bcomman

Arguments :
[+toolchain]
Release channel (e.g. +stable) or custom toolchain to set

ions:
-v, --verbose
Set log level to 'DEBUG" if "RUSTUP_LOG' is unset

-q, --quiet
Disable progress output, set log level to ‘WARN' if 'RUSTU

-h, --help

version

Notes: Rust is maintained and updated often via the rustup
tool every 6 weeks. Be sure to update often!

To do that, type: “rustup update” (not including the quotation
mark).

For Rust embedded, we need more tools, type (or copy
paste the command line, not including the quotation mark):
“rustup component add llvm-tools”

PS C:\Use;s\YananndTed> rustup component add llvm-tools
info: downloading component ‘llvm-tools®

info: installing component ‘llvm-tools’
48.1 MiB / 48.1 MiB (100 %) 13.5 MiB/s in 3s
[]

Again, type (or copy paste the command line, not including
the quotation mark):
“cargo install cargo-binutils --vers '*0.3"

PS C:\Users\YandXandTed> cargo install cargo-binutils
Updating crates.io index
Downloaded cargo-binutils v@.3.6
) loaded 1 crate (25.5KiB) in ©.60s
Installing cargo-binutils v@.3.6
Updating crates.io index
Locking 58 packages to latest compatible versions
cargo _metadata v@.14.2 (available: v0.22.0)
clap v2.34.0 (available: v4.5.47)
Adding rustc-cfg v0.4.0 (available: v0.5.0)
dding toml v@.5.11 (available: v0.9.6)
Downloaded atty vo.2.14
rustc_version v@.4.1
windows-targets v0.52.6
nloaded textwrap v0.11.0
wnloaded unicode-ident v1.0.19
Downloaded memchr v2.7.5
ownloaded backtrace v@.3.75
d aho-corasick vi.1.3
regex v1.11.2
serde_json v1.0.145
clap v2.34.0
toml v@.5.11

wnloaded
[vui]iné failure v0.1.8
g strsim v0.8.0

: claE v2.34.0
g cargo metadata v@.14.2

Compil
D Build ===============] 61/81: cargo-binutils

Now check and remove the older versions of stuff type:
cargo uninstall cargo-embed

cargo uninstall probe-run

cargo uninstall probe-rs

cargo uninstall probe-rs-cl

If not then all good.

PS C:\Users\YandXandTed> cargo uninstall cargo-embed
: package ID specification ~cargo-embed™ did not match any packages
PS C:\Users\YandXandTed> cargo uninstall probe-run

: package ID specification ~probe-run® did not match any packages
PS C:\Users\YandXandTed> cargo uninstall probe-rs

: package ID specification “probe-rs” did not match any packages
PS C:\Users\YandXandTed> cargo uninstall probe-rs-cl

: package ID specification ~probe-rs-cl” did not match any packages

Now install probe-rs by copy-paste the whole red ling below:
powershell -ExecutionPolicy Bypass -c "irm
https://github.com/probe-rs/probe-
rs/releases/latest/download/probe-rs-tools-installer.ps1

| iex"

PS C:\Users\YandXandTed> powershell Bypass

Downloading probe-rs-tools ©.29.1 (x86_64-pc-windows-msvc)
Installing to C:\Users\YandXandTed\.cargo\bin
cargo-embed.exe

cargo-flash.exe
probe-rs.exe
everything's installed!

For more info regarding installing Rust on windows, please
check: https://learn.microsoft.com/en-us/windows/dev-
environment/rust/setup

1.4) Install IDE for Arm chips:
https://developer.arm.com/downloads/-/arm-gnu-
toolchain-downloads

1.5) Install PUTTY:
https://www.chiark.greenend.org.uk/~sgtatham/putty/I
atest.html

1.6) Install Rust related extension in the VS code.

https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Extensions ({3€X) - 3 r .quire restart

Search and install
rust-analyzer
Even Better TOML
Error Lens
Dependi

EXTENSIONS: MARKETPLACE

rust| = Y

rust 708K & 5
® extensions for rust
3 1viB Install Even Better TOML @ 3.3M ¥ 45
Fully-featured TOML support

rust-analyzer D5IM * 5 T
r Rust language support for Visual .. tamasfe Install

st Programming Language | Install | v

Error Lens D7IM * 5 Dependi > 467K % 4.5
Improve highlighting of errors, wa... Hm Empowers developers to efficientl...

Alexander Install

@

Fill Labs Install

1.7) Hardware
Everyone already got a Microbit for digital class, all good.
Microbit is one of the development boards which also serves
as a STEM educational “toy”. For more info:
https://microbit.org/code/

2) Install the github package

https://microbit.org/code/

Someone already did the hard work and put everything we
needed in a folder here: https://github.com/rust-
embedded/discovery-mb2/

Either copy the code:

® discovery-mb2 Pubiic

Local

(3 Clone
]

HTTPS SSH GitHub CLI

https://github.con/rust-embedded/discover

[7) Download zIP

Or clone the whole link via github:

Now we are ready to do:
3) Embedded Rust on Microbit
3.1) First connect your microbit to your PC with a USB
cable. At least one yellow LED light near the cable
connection should be on:

3.2) Type “probe-rs list” in terminal
If you see this, your probe-rs could see microbit:

ML-PH-XL:discovery-mb2 xili$ probe-rs list

The following debug probes were found:
[@]: BBC micro:bit CMSIS-DAP —- 0d28:0204:9906360200052820ab6bad791a39aeab000000006e052820 (CMSIS-DAP)

Nice!

3.3) Now we need to specify cross-compiling’
Try to get to the following folder:

" Your PC runs a powerful CPU, but Microbit runs a much worse one (Nordic nRF52833, an Arm
Cortex-M4 32 bit processor with FPU). So, we have to let Rust knows the spec for Microbit. All
info can be dug out through the chip designer’s datasheet, Arm and Rust website. No worries.

https://github.com/rust-embedded/discovery-mb2/
https://github.com/rust-embedded/discovery-mb2/

discovery-mb2/mdbook/src/03-setup

Type:
rustup target add thumbv7em-none-eabihf

Notes: You only need to do it once.

Type:
cargo embed --target thumbv7em-none-eabihf?

If everything goes on well, you will see:

PROBLEMS OUTPL UG CONSOLE TERMINAL PORTS MEMORY [>-) probe-rs - 03-setup D@ -

Hello World

CONGRADULATIONS! You just did your first
embedded coding on Microbit. (Microbit says “Hello
World”, not your PC.)

2 T L= R eI eRt=F IR Nk illis What rust used to talk to the Microbit chip. It is provided by the
Arm instruction, and it is a smaller instruction set for embedded. The last two letters, “hf’ means

hardware floating point acceleration. AKA the chip can do fractional computations faster.

#![no_main]
#! [no_std]

1se cortex_m::asm::wfi;
1se panic_rtt_target as _;
1se nrf52833_pac as _;

iIse rtt_target::{rpri
Ise cortex_m_rt::entry;
» Run | @ Debug
#[entry]
fn main() -> ! {
r ni rint!();
n!("Hello World");

v 03-setup
> .cargo

> Src

LA R

Cargo.toml|
Embed.toml

(IS A SRS

s o o oo of

A R W W SRR ww

memory.x

™ 4 A am~ L
TRk LA IVIReal T INGA

r]
W Nl 1 ,.IIIU

This is the code
you flashed onto
your Microbit.

Minimum files
needed to do bare
metal “Hello world”.

To stop, Kill Terminal.
bJbash + v (0 1@

Split Terminal
Move Terminal into Editor Area

Move Terminal into New Window

Change Color...

Change Icon...
Rename...
Toggle Size to Content Width

Kill Terminal

3.4) Experience the day of a blessed embedded DEV:
By the work done so far, you have set up your IDE,
flashed your first code into the Microbit. For embedded
system, “Hello World” is often done by a “blinky”, i.e.,
make an LED flashing. That’'s how you can do it:
Use the Terminal to navigate into the folder: 06-hello-
world under the DISCOVERY-MB2 folder:

EXPLORER

v OPEN EDITORS
v DISCOVERY-MB2
> .cargo
> .github
> wvscode
v mdbook

\/ src

> 01-background

> 02-requirements

> 03-setup

> 04-meet-your-hardware
> 05-meet-your-software
> 06-hello-world

> 07-led-roulette

> 08-inputs-and-outputs
> 09-registers

> 10-serial-communication
> NM-uart

> 12-i2c

> 13-led-compass

> 14-punch-o-meter

> 15-interrupts

> 16-snake-game

Here's the quick cmd line:

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS :-- zsh - 06-hello-world -+ ~ [[] W ---

xili@IL-PH-XL discovery-mb2 % cd mdbook/src
xili@L-PH-XL src % cd @6-helilo-wortia

After you reconnect your microbit to your PC, you can use
probe-rs to check if it’s still there:

xili@L-PH-XL @6-hello-world % probe-rs list
The following debug probes were Ttouna:

[@]: BBC micro:bit CMSIS-DAP —- 0d28:0204:9906360200052820ab6ba@791a39aeab000000006e052820 (CMSIS-DAP)

Now flash the new code into the MCU:

xili@L-PH-XL @6-hello-world % cargo embed
Compiling cortex-m v0@.7.7
Compiling nb v@.1.3
Compiling critical-section v1.2.0
Compiling nrf52833-hal v@.18.0
Compiling embedded-hal v@.2.7
Compiling nrf52833-pac v0.12.2
Compiling nrf-hal-common v@.18.0
Compiling nrf-usbd v0.3.0
Compiling
Compiling

Compiling click)

-world)

Config default
Target /Users/xili/microbit/discovery-mb2/target/thumbv7em-none-eabihf/debug/hello-world
Erasing v 100% [####H#####H########] 20.00 KiB @ 31.67 KiB/s (took 1s)

Programming v 100% [#########H#########1##] 20.00 KiB @ 19.76 KiB/s (took 1s)
Finished in 1.64s
Done processing config default

If everything goes on well, your first LED (0,0) should be
blinky now.

What is going on?

First, take a look at the mcirobit-v2 hardware schematic:
https://qgithub.com/microbit-foundation/microbit-v2-
hardware/blob/main/V2.00/MicroBit V2.0.0 S schematic.PD
F:

For the LED matrix, if we put ROW 1 at high (3.3V), and
COL1 at low (0 V), we will induce a current through D2 LED.
There are many levels of coding that function in Rust
embedded. We will talk more about them in the next lab.

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF

LED matrix

COL1-5 are usually nRFS2 outputs that are used 1o sink ¢
Illuminate LEDs. Nota that for light sensing the LEDs mus
& 5 aro connectoed to nRFS2 ADC-capable pins but light

[Ccoi3

[corz>

COL3

{ROWZ)
(421%243

D12 D4 Di6

And that’s all the codes are done, with a 500 ms timer to
make it on and off. If you have done Arduino projects before,
the codes would look very familiar.

mdbook > src > 06-hello-world > src > main.rs
1 #! [no_main]
#! [no_std]

Ise cortex_m_rt::entry;

Ise embedded_hal::{delay::DelayNs, digital::OutputPin};
Ise microbit::hal::{gpio, timer};

use panic_halt as _;

» Run | @ Debug
#[entry]
fn main() => ! {

let board: Board = microbit::Board::take().unwrap();

et mut rowl: PO_21<Output<PushPull>> = board.display_pins.rowl.into_push_pull_output(gpio::Level::High);
let _coll: P@_28<0Output<PushPull>> = board.display_pins.coll.into_push_pull_output(gpio::Level::Low);

et mut timer@: Timer<TIMERO> = timer::Timer::new(board.TIMER®);

op {
timer@.delay_ms(500);
rowl.set_high().unwrap();
timer@.delay_ms(500);
rowl.set_low().unwrap();

