
Setting up Embedded Rust for Microbit (v1.2)    
  Sep 2025 ENR325 
 
The most painful process of doing embedded system, is not 
the coding (or getting paid less than software dev), but 
setting up your coding environment.  
 
Embedded is NOT hard. A vending machine is an 
embedded system. Who’s afraid of a vending machine? 
 
This manual is built based on <micro::bit v2 Embedded 
Discovery Book>. Thanks to Embedded Working Group at 
the Rust community. 

 
1)  Tooling: 

1.1)  Install Rust:  
https://www.rust-lang.org/tools/install 
*For Linux or Mac, it’s just a cmd line. 
 
For installation on windows, go to: 
https://www.rust-lang.org/tools/install 
Download the exe file. Most likely your PC is 64-BIT. 

 
 
 

https://docs.rust-embedded.org/discovery-mb2/index.html#microbit-v2-embedded-discovery-book
https://docs.rust-embedded.org/discovery-mb2/index.html#microbit-v2-embedded-discovery-book
https://github.com/rust-embedded/wg
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install


Or you can go to: 
https://forge.rust-lang.org/infra/other-installation-
methods.html 
Look for the mirror (msi) file: 

 
 
When you double click the exe file, you will open a cmd 
window. Choose standard installation (press enter or 1). 

 

 

This is your PC’s CPU 
“type”, member that!  

https://forge.rust-lang.org/infra/other-installation-methods.html
https://forge.rust-lang.org/infra/other-installation-methods.html


When installing Rust, if prompt, allow it to install the Visual 
Studio C++ Build tools too. MS Windows needs these to run 
Rust. 
 

1.2) Install code editor (IDE) 

VS code works, so let’s just use that. 
Notes: there are many IDE available in the wild. VS code is 
not the fastest, but it’s one of the popular ones to get rolling. 
 
To install VS code on windows, go to: 
https://code.visualstudio.com/ 
or 
https://code.visualstudio.com/download 
 
Download the installer for your OS. You will be required to 
create an account, or link your account to Github. If you 
haven’t done so, now it’s the time. 

 
  

https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://code.visualstudio.com/
https://code.visualstudio.com/download


1.3) Get familiar with Visual Studio Code (VS Code)  

 
When you first open VS code, it might look like this: 

 
 
You will mostly work within two windows/panels, for now. 

i) The work bench (where we do the coding stuff): 

 
 
 
 
 

 

Lines of codes will be 
cooked here.  



ii) The terminal (defaults on the bottom, where we do 
some hacker stuff): 

 
Let’s type “rustup” (not including the quotation mark) to 
check the version. 

 
Notes: Rust is maintained and updated often via the rustup     
tool every 6 weeks. Be sure to update often!  
To do that, type: “rustup update” (not including the quotation 
mark). 
 
For Rust embedded, we need more tools, type (or copy 
paste the command line, not including the quotation mark): 
“rustup component add llvm-tools” 

Try click this 



 
Again, type (or copy paste the command line, not including 
the quotation mark): 
“cargo install cargo-binutils --vers '^0.3'” 

 

 
Now check and remove the older versions of stuff type: 
cargo uninstall cargo-embed 
cargo uninstall probe-run  
cargo uninstall probe-rs  
cargo uninstall probe-rs-cl 
If not then all good. 



 
 
Now install probe-rs by copy-paste the whole red ling below: 
powershell -ExecutionPolicy Bypass -c "irm 
https://github.com/probe-rs/probe-
rs/releases/latest/download/probe-rs-tools-installer.ps1  
| iex" 

 
 
For more info regarding installing Rust on windows, please 
check: https://learn.microsoft.com/en-us/windows/dev-
environment/rust/setup 
 

1.4) Install IDE for Arm chips: 
https://developer.arm.com/downloads/-/arm-gnu-
toolchain-downloads 
 

1.5) Install PUTTY: 
https://www.chiark.greenend.org.uk/~sgtatham/putty/l
atest.html 
 

1.6) Install Rust related extension in the VS code. 

https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html


 
   Search and install 
rust-analyzer 
Even Better TOML 
Error Lens 
Dependi 

  

  
1.7) Hardware 

Everyone already got a Microbit for digital class, all good. 
Microbit is one of the development boards which also serves 
as a STEM educational “toy”. For more info: 
https://microbit.org/code/ 
 

2) Install the github package 

https://microbit.org/code/


Someone already did the hard work and put everything we 
needed in a folder here: https://github.com/rust-
embedded/discovery-mb2/ 
Either copy the code: 

 
Or clone the whole link via github: 
 
Now we are ready to do: 

3) Embedded Rust on Microbit 
3.1) First connect your microbit to your PC with a USB 

cable. At least one yellow LED light near the cable 
connection should be on: 

 
3.2) Type “probe-rs list” in terminal 
If you see this, your probe-rs could see microbit: 

 
Nice! 
 
3.3) Now we need to specify cross-compiling1 

Try to get to the following folder: 

 
1 Your PC runs a powerful CPU, but Microbit runs a much worse one (Nordic nRF52833, an Arm 
Cortex-M4 32 bit processor with FPU). So, we have to let Rust knows the spec for Microbit. All 
info can be dug out through the chip designer’s datasheet, Arm and Rust website. No worries. 

https://github.com/rust-embedded/discovery-mb2/
https://github.com/rust-embedded/discovery-mb2/


discovery-mb2/mdbook/src/03-setup 
 
Type: 
rustup target add thumbv7em-none-eabihf 
 

Notes: You only need to do it once.  
 

Type: 
cargo embed --target thumbv7em-none-eabihf2 
 

If everything goes on well, you will see: 

 
CONGRADULATIONS! You just did your first 
embedded coding on Microbit. (Microbit says “Hello 
World”, not your PC.) 

 
2 thumbv7em-none-eabihf is what rust used to talk to the Microbit chip. It is provided by the 
Arm instruction, and it is a smaller instruction set for embedded. The last two letters, “hf” means 
hardware floating point acceleration. AKA the chip can do fractional computations faster. 



 
  

This is the code 
you flashed onto 
your Microbit. 

Minimum files 
needed to do bare 
metal “Hello world”. 



To stop, Kill Terminal. 

 
 

3.4) Experience the day of a blessed embedded DEV: 
By the work done so far, you have set up your IDE, 
flashed your first code into the Microbit. For embedded 
system, “Hello World” is often done by a “blinky”, i.e., 
make an LED flashing. That’s how you can do it: 
Use the Terminal to navigate into the folder: 06-hello-
world under the DISCOVERY-MB2 folder: 

 
Here’s the quick cmd line: 



 
 
After you reconnect your microbit to your PC, you can use 
probe-rs to check if it’s still there: 

 
 
Now flash the new code into the MCU: 

 
 
If everything goes on well, your first LED (0,0) should be 
blinky now.  
 
What is going on? 
First, take a look at the mcirobit-v2 hardware schematic: 
https://github.com/microbit-foundation/microbit-v2-
hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PD
F 
For the LED matrix, if we put ROW 1 at high (3.3V), and 
COL1 at low (0 V), we will induce a current through D2 LED. 
There are many levels of coding that function in Rust 
embedded. We will talk more about them in the next lab. 

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF
https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.00/MicroBit_V2.0.0_S_schematic.PDF


 
And that’s all the codes are done, with a 500 ms timer to 
make it on and off. If you have done Arduino projects before, 
the codes would look very familiar. 

 


